Immortalized keratinocyte lines derived from human embryonic stem cells.

نویسندگان

  • Shiro Iuchi
  • Sally Dabelsteen
  • Karen Easley
  • James G Rheinwald
  • Howard Green
چکیده

Cells of the human embryonic stem (hES) cell line H9, when cultured in the form of embryoid bodies, give rise to cells with markers of the keratinocyte of stratified squamous epithelia. Keratinocytes also form in nodules produced in scid mice by injected H9 cells; the hES-derived keratinocytes could be recovered in culture, where their colonies underwent a peculiar form of fragmentation. Whether formed from embryoid bodies or in nodules, hES-derived keratinocytes differed from postnatal keratinocytes in their much lower proliferative potential in culture; isolated single keratinocytes could not be expanded into mass cultures. Although their growth was not improved by transduction with the hTERT gene, these keratinocytes were immortalized by transduction with the E6E7 genes of HPV16. Clonally derived lines isolated from E6E7-transduced keratinocytes continued to express markers of the keratinocyte lineage, but the frequency with which they terminally differentiated was reduced compared with keratinocytes cultured from postnatal human epidermis. If other hES-derived somatic cell types also prove to be restricted in growth potential, not identical to the corresponding postnatal cell types, and to require immortalization for clonal isolation and expansion, these properties will have to be considered in planning their therapeutic use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles

Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 6  شماره 

صفحات  -

تاریخ انتشار 2006